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Aging phenomena in the plastic response of amorphous solids are studied within the theory of shear
transformation zones �STZs�, which describes the kinetic rearrangement of localized defects in response to
external stress. To account for the slow, nonequilibrium dynamics after a quench below the glass transition
temperature, two possible models are considered. In the first model, transition rates between the internal states
of STZs decrease with time, while in the second model aging occurs due to the relaxation of an effective
temperature that determines the number density of STZs and other out-of-equilibium degrees of freedom. It is
shown that for reasonable choices of parameters, both models capture qualitatively typical aging features seen
in computer simulations and experiments: �i� compliance curves measured for different waiting times tw after
the quench can be superimposed, when the observation times are rescaled with relaxation times �tw

�, 0��
�1, and �ii� stress-strain curves show a stationary plateau stress independent of tw and a peak stress that
increases logarithmically with both tw and the strain rate. Trends of the aging behavior with the quench
temperature are also discussed.
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I. INTRODUCTION

Whereas in crystalline solids, plastic flow can be ascribed
to the motion of dislocations, in amorphous solids, deforma-
tion and yield should be related to the dynamics of localized
defect structures. Corresponding phenomenological defect-
flow theories developed 30–40 years ago �1–3� have been
extended recently by Langer and co-workers to the shear-
transformation zone �STZ� theory of amorphous plasticity
�4–9�. The STZ theory has been very successful in account-
ing for the mechanical behavior of glassy solids and there-
fore provides a promising basis for further developments.

STZs are regions containing a few molecules that kineti-
cally rearrange into preferred, locally anisotropic configura-
tions �internal states� with respect to an applied external
stress field. Due to the rearrangements, a repopulation of
internal states of the STZs occurs, which allows the theory to
account for memory effects as seen in numerous experiments
and reported already more than 120 years ago in connection
with a reduction of the elasticity limit for reversed loading
�Bauschinger effect �10��.

STZs have a finite lifetime and can be created and anni-
hilated with rates irrespective of their internal state and pro-
portional to the dissipated energy during loading �11�. This
intriguing feature introduces a kind of feedback mechanism
and leads to nonlinear rate equations for the population den-
sities of STZ states. The theory predicts a transition from a
jammed to a flowing state when the applied stress exceeds a
critical value of the order of the yield stress �6�. Below the
critical stress, the strain rate never becomes large enough to
produce sufficiently strong dissipation for continuous cre-
ation of new “unjammed” STZs. As a result, the system
reaches a jammed state, where the strain rate becomes zero

and the population of the internal STZ states is in kinetic
equilibrium with the external loading. Above the critical
stress, however, new STZs with internal states independent
of the stress field are constantly created by the dissipated
plastic energy, and a stationary flow with constant strain rate
is reached due to the repopulation of these freshly generated
states into internal states with preferred alignment. In addi-
tion to fluctuations caused by dissipation, STZs can be cre-
ated and annihilated by thermal fluctuations �7�. The thermal
rate for these spontaneous processes is assumed to be com-
parable to the rate of the main structural relaxation process of
the system.

In recent years, the STZ theory was further developed to
account for the behavior seen in systems with slow nonequi-
librium dynamics, as, for example, metallic and polymeric
glasses �7,9�. To this end, a Boltzmann probability for the
occurrence of an STZ was considered with an effective dis-
order temperature different from the bath temperature. The
effective temperature determines the change of configura-
tional entropy with the mean energy of the out-of-
equilibrium degrees of freedom. While spontaneous pro-
cesses with a thermal rate tend to drive the effective
temperature to the bath temperature, plastic deformations un-
der loading tend to drive the effective temperature to a dif-
ferent temperature corresponding to a nonequilibrium sta-
tionary state of the system.

The concept of an effective temperature involves physics
going beyond the very problem of plastic flow in amorphous
solids. The effective temperature has been shown to be a
fruitful concept in model studies of out-of-equilibrium dy-
namics �12� and in simulations of glassy materials under
steady shear �13–16�. A recent simulation study of shear
banding has provided direct numerical evidence for the ex-
istence of an effective temperature in amorphous solids �17�.
So far, however, the necessary requirements for its validity,
its detailed implementation in the evolution equations, and
its limitations cannot be derived from general principles.*jrottler@phas.ubc.ca
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Therefore, one is dependent on certain Ansätze and their
verification in each situation under investigation.

The aim of this work is to study the possibility of describ-
ing slow out-of-equilibrium dynamics in the rheology of
glassy systems within or by simple extensions of the STZ
theory. To this end, we will consider two possible models. In
the first one, discussed in Sec. III, no effective temperature is
introduced. The slowing down of the dynamics with the sys-
tem’s age is described by an overall increase of the structural
relaxation time �, which, as a primary rate �−1, enters the
transition rates between STZ states. It is assumed that under
loading, the energy dissipation due to plastic work drives the
relaxation time to a limiting value �� when reaching a sta-
tionary state. In the second model, discussed in Sec. IV, the
concept of an effective temperature is followed in the form
proposed in the most recent version of the STZ theory �9�.

Throughout the paper, we will rely on the simplified two-
state version of STZ theory, where in a two-dimensional ge-
ometry under pure shear, STZs can be elongated only along
two principal axes of the deviatoric stress tensor. As shown
in �9�, more general situations requiring a tensorial formula-
tion may be essentially reduced to the two-state description,
if the distribution of the variables characterizing the STZ
states �orientation, size, transition barriers, etc.� is suffi-
ciently narrow to allow for a replacement of disorder aver-
ages by representative values.

Our goal is to capture the typical aging behavior found in
two standard protocols, which we will call the stress-step
protocol and the constant-strain-rate protocol. In the stress-
step protocol, the material is quenched to a fixed temperature
T below the glass transition temperature Tg at zero time, and
exposed to a constant stress �ext after a waiting time tw.
Thereafter, the shear deformation 	�t , tw� or compliance
J�t , tw�=	�t , tw� /�ext is followed as a function of the obser-
vation time t. In the constant-strain-rate protocol, the system
is sheared with a fixed rate 	̇ext after tw and the deviatoric
stress ��	 , tw� is followed as a function of the observation
time t or accumulated strain 	= 	̇extt. In the following section,
we first describe the typical features seen in such protocols as
recently explored in detail by molecular-dynamics simula-
tions �18� of the Kob-Andersen model �80 /20 Lennard-Jones
mixture� �19� and a bead-spring model of polymers �20� by
one of the authors.

II. AGING BEHAVIOR IN THE PLASTIC DEFORMATION
OF GLASSY MATERIALS

In the stress-step protocol, for observation times t larger
than some microscopic time t0, the plastic compliance
�Jpl�t , tw�=J�t , tw�−1 /2E, where 1 /2E is the elastic part with
E the shear modulus� is found to follow a scaling behavior,

Jpl�t,tw� = F�t0
�−1 teff�t,tw;��

tw
� � , �1�

where F�·� is a scaling function with F�0�=0, ��1 is the
“aging exponent,” and teff�t , tw;�� is Struik’s effective time
�21�,

teff�t,tw;�� = �
0

t

dt�
tw
�

�t� + tw�� �2a�

=
tw

1 − �
��1 +

t

tw
�1−�

− 1	 �2b�


�t , t/tw 
 1,

t1−�tw
�

�1 − ��
, t/tw � 1. � �2c�

According to this expression, aging effects in the response
�1� disappear for t / tw�1. The exponent � usually depends
on the applied stress and the temperature, �=���ext ,T�. It
typically decreases with increasing �ext, ����ext ,T� /��ext
�0, a behavior sometimes termed “rejuvenation,” since in
this case larger stresses will lead to a decrease of the char-
acteristic response time �tw

� of the compliance in the aging
regime t0
 t� tw �22�. Additionally, the aging exponent typi-
cally decreases with decreasing T�Tg, ����ext ,T� /�T0.

In Refs. �20,23�, a reasonable fit to the scaling function
was achieved by using a Kohlrausch type law,

F�u� = exp�cu�� − 1, �3�

with an exponent �0.5. However, the form of the scaling
function and the dependence of � on �ext and T usually
depend on details of the system. A primary focus in this work
will be to see if the generic scaling feature with teff�t , tw;��
can be recovered by variants of the STZ theory.

Let us finally note that Eq. �1� can be a valid description
only for observation times smaller than a crossover time t�,
while beyond t� the compliance is expected either to saturate
for loads �ext smaller than the yield stress �y, or to increase
linearly with t for �ext�y. However, even for large stresses,
the regime t t� usually cannot be reached so that the be-
havior as described by Eq. �1� gives the accessible informa-
tion obtained from a stress-step protocol.

In the constant-strain-rate protocol, for sufficiently large
shear rates, the deviatoric stress ��	 , tw� first increases with 	
up to a peak stress �max at a shear deformation 	max
= 	̇exttmax. In monomeric glass formers such as colloidal or
metallic glasses, the stress thereafter relaxes toward a plateau
stress �ss when the system reaches a stationary state. In poly-
mer glasses, however, a similar regime of strain softening is
followed by strain hardening due to chain entanglements and
a true steady state cannot be achieved.

Both the plateau and the peak stress increase monoto-
nously with 	̇ext. For short waiting times tw�1 / 	̇ext, a loga-
rithmic increase �ln�	̇extt0� is typically found, while for long
waiting times tw1 / 	̇ext, �max and �ss become almost inde-
pendent of 	̇ext. In the short waiting time regime tw�1 / 	̇ext,
the overshoot stress ��max−�ss� increases as well with 	̇ext,
meaning that in this regime �max grows faster with the strain
rate than �ss. At fixed strain rate, the plateau stress is inde-
pendent of the waiting time. By contrast, the peak stress �max
increases logarithmically with tw.

The combined dependence of �max on 	̇ext and tw was
studied in detail in Ref. �18� for the Kob-Andersen model. It
was found that for small tw
	eff / 	̇ext, �max is dominated by
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the time tmax=	max / 	̇ext to reach the peak stress, while for
tw�	eff / 	̇ext, �max grows logarithmically with tw, with an off-
set increasing with ln�	̇extt0�. The effective shear deformation
	eff is of order 	max and accounts for the load influence on the
aging. In the case of rejuvenation, 	eff�	max, while for over-
aging, 	eff	max. The overall behavior can be summarized as

�max = �max
�0� + �max

�1� ln� tw

t0
+

	eff

	̇extt0
� + �max

�2� ln�	̇extt0� , �4�

where �max
�i� , i=0,1 ,2, are constants independent of tw and

	̇ext, and �max
�2� �max

�1� . Equation �4� implies that �max+ ��max
�2�

−�max
�1� �ln�tw / t0� is a function of 	̇exttw only.

III. AGING DUE TO SLOWING DOWN OF STZ
TRANSITION RATES

Our first approach is motivated by the idea that aging
slows down all relevant transitions in the glassy solid. There
is clear experimental �21�, theoretical �24�, and computa-
tional �25� evidence that the main structural �-relaxation
time � increases as a power law with wait time tw in a
strongly temperature-dependent manner. Although the mol-
ecules find themselves in highly constrained, caged configu-
rations, they are not completely jammed and, at finite tem-
perature, can perform small thermally activated excursions
that improve the local packing. It therefore seems natural to
assume that the STZ transition rates are proportional to the
inverse of �, and to supplement the �scalar� STZ equations of
motion as formulated in Ref. �6� with an evolution equation
for �. The possibility of time-dependent STZ transition rates
has already been suggested by Lemaître in the context of
free-volume relaxations �26�, but not systematically applied
to the aging phenomenology described in Sec. II.

In the scalar STZ theory, the total shear deformation 	tot
=	el+	pl is the sum of the elastic part 	el=� /2E and the
plastic part 	pl, which follows the rate equation

	̇pl = ��R−���n− − R+���n+� , �5�

where n� are the number densities of STZ states in the two
principal directions, � is the deviatoric stress, and R���� are
the transition rates; � is an elementary volume of order the
size of an STZ. The number densities of the STZ states obey
the rate equations

ṅ� = R����n� − R����n� − ��n�,���n� −
n�

2
� , �6�

where � is the annihilation rate per STZ and n�� /2 the pro-
duction rate of STZs per volume in either state due to fluc-
tuations caused by the loading. In Ref. �6�, it is suggested
that n� is a constant and that � is proportional to the dissi-

pated energy density per STZ, i.e., �=−Q̇ / ��Q�ntot� with

�−Q̇� the dissipated heat per unit time and volume,
ntot=n++n− the total STZ density, and �Q a characteristic
scale of energy density or stress. An explicit expression for
�=��n� ,�� can be derived by using �i� the first law of ther-

modynamics, U̇= Q̇+Ẇ, with Ẇ=2�	̇pl the plastic work den-
sity per unit time and U=U�n− ,n+� the STZ contribution to

the internal energy density; �ii� a scaling Ansatz U�n− ,n+�
=�Q�ntot��� /ntot� with �=n+−n−; and �iii� the requirement
that the dissipation rate must be positive according to the
second law of thermodynamics �for further details, see Ref.
�6� and Eq. �17� below�.

In this work, we shall use a semilinearized form �27� of
the transition rates,

R���� =
1

�
exp��

�

�0
� , �7�

where �0 is a characteristic stress of the order of the yield
stress. Our proposed modification consists of an evolution
equation for the relaxation time �,

�̇ = �
�

t + t0
− �

ntot

n�

��� − ��� , �8�

where � is a constant. The first term on the right-hand side
describes the slowing down of the structural relaxation in the
absence of plastic deformation, �=�0�tw / t0+1��
�0�tw / t0��

for tw� t0, where �0 is the initial structural relaxation time
after the quench. The unlimited increase of � with tw in the
absence of dissipation refers to the nonequilibrium aging re-
gime, which is of interest in this work. In systems in which
the experimental time window covers waiting times tw ex-
ceeding an equilibration time teq, a modification of Eq. �8� is
necessary so that � approaches a constant value for tw� teq.
Such a modification can be done similarly to the incorpora-
tion of the thermal relaxation process in the effective tem-
perature formulation of the STZ theory �see Eq. �20� below�.

The second term on the right-hand side of Eq. �8� implies
that in the presence of dissipation during plastic deformation,
the aging process will eventually stop, so that � attains a
steady-state value ��. The rate for approaching this steady-
state value is assumed to be proportional to the dissipation

rate per volume −Q̇�ntot�. By construction, the scalar vari-
able � acts as a memory carrier of the system. We note that a
similar approach to capturing the effects of aging and reju-
venation was proposed in Ref. �28� in the context of an evo-
lution equation for the inverse relaxation time or fluidity in a
rheological model for soft glasses.

Since the strain rate dependence of the plateau stress �ss
may in general be different from the rate dependence of the
peak stress �max �i.e., the overshoot ��max−�ss� often in-
creases with rate, see Sec. III B below�, we further assume
that �� is a function of the total strain rate,

�� = �0
�f�	̇tott0� . �9�

Specifically, we choose f�u�=u1/2 in the following analysis.
A simple motivation for this Ansatz is the idea that in steady
state where the system is constantly stirred, the structural
relaxation time will be coupled to the strain rate. The choice
of the exponent 1 /2 is arbitrary and could be adjusted to a
specific rate dependence of the steady-state flow stress.

We follow the authors of the STZ theory and rewrite Eqs.
�5�–�8� in terms of the normalized total STZ density � and
STZ imbalance m, 0�m�1,
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� =
ntot

n�

=
n+ + n−

n�

, m =
�

ntot
=

n+ − n−

n+ + n−
. �10�

With 	0=�n�, these equations then read

	̇pl = 	0C�����T��� − m� , �11�

�̇ = − ��� − 1� , �12�

ṁ = 2C����T��� − m� − �
m

�
, �13�

�̇ = �
�

t + t0
− ����� − ��� , �14�

where we introduced the rate factors

C��� =
1

2
�R−��� − R+���� =

1

�
cosh� �

�0
� , �15�

T��� =
R−��� − R+���
R−��� + R+���

= tanh� �

�0
� . �16�

The annihilation rate following from the procedure de-
scribed above is

���,�,m� =
2C����T��� − m���Q

−1� − ���m��
1 − �−1m���m� + ��−1 − 1���m�

. �17�

As discussed in �7�, this rate remains positive if the numera-
tor of the fraction remains positive, meaning that �T���−m�
and ��Q

−1�−���m�� should change sign at the same pair of
values �� ,m�. This implies that the inverse function
T −1�m�=�0atanh�m� determines ���m�=�Q

−1T −1�m� and

��m� = �0 +
1

�Q
�

0

m

T −1�m��dm� �18a�

=�0 +
�0

2�Q
��1 − m�ln�1 − m� + �1 + m�ln�1 + m�� ,

�18b�

where �0 is a constant.
Experiments and simulations show that aging is a strongly

temperature-dependent phenomenon. As discussed in Sec. II,
the aging exponent � is found to decrease when the tempera-
ture is lowered: � decreases from close to 1 for temperatures
just below the glass transition temperature to zero in the limit
of T→0. Furthermore, the initial relaxation time �0 will de-
pend on the quench depth and quench rate, typically leading
to a strong increase of �0 with decreasing T �the temperature
after the quench�. Also the steady-state relaxation time �� �or
�0

� in the Ansatz �9�� can be expected to increase with de-
creasing temperature. At this point in the development, we
do not wish to make specific assumptions about the func-
tional forms of these temperature dependences. We aim to
illustrate below that the correct trends with temperature can
emerge from such a theory if one allows the described quan-
tities to vary with T. Specific assumptions can be made when

one attempts to fit the theory to specific materials. This might
in fact require additional modifications such as thermally ac-
tivated transition rates �see also Sec. V�.

We now demonstrate that our modified STZ theory is ca-
pable of describing all trends of aging effects on the me-
chanical properties as described in Sec. II. To this end, we
take t0, 	0, and �0 as units for the time, strain, and stress,
respectively, and solve Eqs. �11�–�14� numerically during the
observation time t, starting with the initial conditions
	pl�0, tw�=0, m�0, tw�=0, ��0, tw�=�0, and ��0, tw�
=�0�tw+1��. In the constant-strain-rate protocol with 	̇tot
= 	̇ext, the set of evolution equations �11�–�14� is supple-
mented by

�̇ = 2E�	̇ext − 	̇pl� �19�

with the initial condition ��0, tw�=0. To get an impression of
the influence of the temperature, the parameters �, �0, and �0

�

are varied in accordance with the expected trend. For the
remaining parameters, a fixed representative set is used in all
calculations: �=1, �0=�0, �0=0.01, and �Q=2E=1.

A. Creep compliance

Figure 1 shows several creep compliance curves with
shapes typically seen in experiments and simulations. In
panel �a� we have chosen �=1 and relatively small values of
�0 and ��. This combination of parameters might represent a
temperature just below the glass transition temperature
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FIG. 1. �Color online� Compliance curves �red, dot dashed� for
�ext=0.1 and two different “temperatures”: �a� tw=103–106, �=1,
�0=0.1, and �0

�=10; �b� tw=108–1011, �=0.5, �0=1000, and �0
�

=100. The compliance curves collapse onto a common curve �blue,
solid� when time is rescaled with tw

�.
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where “full” �or “normal”� aging is observed. To demonstrate
that the theory can also capture trends consistently at lower
temperatures, we consider lower values of �=0.5 in panel
�b� and choose a complementary set of relaxation times. For
increasing wait times tw, curves shift to the right on the time
axis in both cases, indicating that aging delays the onset of
creep. After rescaling time with tw

�, all curves collapse onto a
single curve, which shows that the compliance obeys time-
waiting time superposition, a key feature of aging phenom-
enology. An inspection of the STZ equations of motion
shows that this is not surprising since the rate factor C��� is
the only age-dependent quantity on the right-hand side �rhs�
of all equations, including the equation for �. All times are
therefore rescaled as desired. However, we note that the scal-
ing function does not agree well with the Kohlrausch form
Eq. �3�.

B. Peak stress

Having established the presence of aging effects in the
compliance, we proceed by studying deformation in the
constant-strain-rate protocol. Figure 2 shows representative
stress-strain curves for the same parameters as in Fig. 1. We
observe that the initial elastic response, �=	, is followed by
a stress overshoot that increases with increasing tw. Sus-
tained plastic deformation then reduces the stress from a
peak value �max to a steady-state, history-independent pla-
teau stress �ss. Our model already captures two major fea-
tures of aging: an increase of the peak �yield� stress �max

with age and a fully “rejuvenated,” age-independent flow
stress �ss.

We now turn to the effect of strain rate at fixed waiting
time tw in Fig. 3. Both �max and �ss increase with increasing
strain rate, but they differ in rate sensitivity. For 	̇ext�1 / tw,
both stresses vary weakly with rate and approach limiting
values for 	̇ext→0. For 	̇1 / tw, the rate dependence be-
comes stronger. At the same time, the overshoot ��max−�ss�
increases with 	̇ext. These trends are again in agreement with
the molecular-dynamics simulations in Refs. �18,20,29� and
also with experiments; see, e.g., the behavior found for me-
tallic glasses in Ref. �30�.

Figure 4�a� shows the peak stress �max obtained from the
stress-strain curves in Fig. 2 as well as two additional values
of �=0.75,0.25 or “temperatures” as a function of waiting
time tw at fixed 	̇ext=0.1 in the regime tw1 / 	̇ext=10. For
each temperature, the curves become linear in the semiloga-
rithmic representation for large tw, meaning that �max

�max

�1� ln�tw� for tw→� in agreement with Eq. �4�. As shown
in the inset of Fig. 4�a�, the slope �max

�1� is proportional to �.
Moreover, when extrapolating the asymptotic lines to tw=1,
we can determine their “offset,” which, according to Eq. �4�,
should increase with 	̇ext as �max

�0� +�max
�2� ln�	̇ext�.

Note that for fixed tw, the dependence of �max in Fig. 4�a�
is qualitatively different. For small tw, �max increases with
decreasing “temperature.” This is the expected behavior, if
aging effects are not present or can be neglected. For large tw
by contrast, which corresponds to a strongly aged system,
�max decreases with decreasing “temperature.” In our model,
the appearance of this behavior is a consequence of our
choice of the relaxation times �0. The crossover into this
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FIG. 2. �Color online� Stress-strain curves for several waiting
times tw=104–1010 �bottom to top�, fixed strain rate 	̇ext=0.01 and
otherwise the same parameters as in Figs. 1�a� and 1�b�,
respectively.
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FIG. 3. �Color online� Stress-strain curves for varying strain
rates 	̇ext=10−5–101 �bottom to top�, fixed tw=104 and otherwise
the same parameters as is Fig. 1�a� and 1�b�, respectively.
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regime can easily be controlled by adjusting �0, and hence
the offset �max

�0� of the curves. It would be interesting to see if
the existence of this regime can be confirmed in experiments
and simulations.

In panel �b� of Fig. 4, the peak stress �max is analyzed as
a function of strain rate 	̇ext at fixed tw=104 for the same four
different “temperatures” as in panel �a�. The data for two
“temperatures” �=1 and 0.5 correspond to the curves shown
in Fig. 3. Two regimes of rate dependence emerge: a loga-
rithmic rate dependence at large rates crosses over into van-
ishing rate sensitivity at lower rates. As the temperature is
lowered, the crossover between the two regimes moves to
smaller 	̇ext. From the slope of the asymptotic lines for large
	̇ext, we can determine the constant �max

�2� according to Eq. �4�.

Another important rheological quantity that one would
like to predict with STZ theory is the steady-state plateau
stress �ss. This stress is independent of tw. Its dependence on
	̇ext is shown in Fig. 4�c�. Again, we see two regimes of rate
sensitivity, with the crossover moving toward smaller 	̇ext at
lower temperatures.

One of the central findings of Ref. �18� was that the peak
stress for different rates and waiting times could be superim-
posed onto a master curve when plotted against the dimen-
sionless quantity 	̇tw and shifting the peak stress by a waiting
time-dependent factor. Using the values �max

�1� and �max
�2� for

each temperature, we can test if �max+ ��max
�2� −�max

�1� �ln�tw� is a
function of 	̇exttw only, as predicted by Eq. �4�. Correspond-
ing scaling plots are shown in Fig. 5 and compare well with
the behavior found in Fig. 3 of Ref. �18�.

IV. AGING DUE TO EFFECTIVE TEMPERATURE-
CONTROLLED STZ DENSITY

Since its formulation in Ref. �6�, STZ theory has under-
gone a series of developments that have included thermal
effects as well as the notion of an effective temperature Teff
�7�, which controls the limiting value n� of the STZ density.
Similar to the relaxation time �, Teff can be regarded as an
additional state variable that encodes the history of the non-
equilibrium dynamics of the system. As an alternative ap-
proach for describing the aging effects discussed in Sec. II,
we consider here the primary rate �−1 in Eq. �7� to be inde-
pendent of tw, but n� to be age-dependent according to the
most recent version of STZ theory �9� �in scalar formula-
tion�. Hence Eq. �8� is irrelevant now and we instead set �
�a�T�t0, where a�T� is a temperature-dependent prefactor
and t0 a �T-independent� microscopic time, which we con-
tinue to use as a time unit.

Compared to the formulation of Ref. �6� used in Sec. III,
two extensions have to be considered. The first is the effec-
tive temperature concept, which means that the limiting
value n� is replaced by n� exp�−1 /��, where �=Teff /TZ, and
kBTZ is a typical STZ formation energy. The second exten-
sion is that in addition to the fluctuations due to dissipation
of mechanical energy, thermal fluctuations give rise to the
creation and annihilation of STZs. Denoting the correspond-
ing thermal relaxation rate per STZ by �, Eq. �6� becomes
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FIG. 4. �Color online� Peak stress �max �a� as a function of
waiting time at fixed 	̇ext=0.1, and �b� as a function of strain rate at
fixed tw=104, for four different “temperatures” represented by ��
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ṅ� = R�n� − R�n� − �� + ���n� −
n�

2
e−1/�� . �20�

With these modifications, one has to replace � by �tot

=�+�, 	0=�n� by 	̃0=	0 exp�−1 /��, and �=ntot /n� by �̃
=� exp�1 /�� in Eqs. �11�, �13�, and �12�. The total annihila-
tion rate becomes

�tot =
2C�T − m���Q

−1� − ���m�� + �

1 − �̃−1m���m� + ��̃−1 − 1���m�
. �21�

To ensure that � is positive for ��0, the same ��m� from
Eq. �18� can be used.

Moreover, as discussed in Ref. �9�, the introduction of the
effective temperature leads to a separation of time scales:

While �̃ is of order unity according to Eq. �12�, 	̃ on the
right-hand side of Eq. �11� leads to an additional factor
�exp�−1 /��
1, so that 	pl relaxes much slower than � and
m in Eqs. �12� and �13�, respectively. For the time evolution
of 	pl or � in Eq. �19�, we therefore can use a quasistationary

approximation, where �̃ and m attain their steady-state val-

ues �̃�=1 ���=exp�−1 /��� and

M��� =
�Q

2�
��1 +

T����
�Q

+
�

2C���	
−��1 +

T����
�Q

+
�

2C���	2

− 4
T����

�Q
� . �22�

The only remaining dynamical equation is the equation for
	pl �and Eq. �19��,

	̇pl = 	0 exp�− 1/��C����T��� − M���� , �23�

with

� =
2C�T − M���Q

−1� − ���M�� + M���M��
1 − M���M�

. �24�

A difficult problem is the prediction of the time evolution
of Teff, which involves other degrees of freedom than belong-
ing to shear deformations. In Ref. �9�, it is suggested that
�=Teff /TZ relaxes according to

�̇ = �1e−1/����1 −
�

��
� + �2e−�/����1 −

�

�T
� , �25�

where �1, �2, and � are constants. The first term describes
the change of Teff connected to the configurational degrees of
freedom associated with the STZs. It tends to drive the ef-
fective temperature toward a steady-state value �� in the
presence of plastic flow with a rate proportional to the total
number density ���=exp�−1 /�� of STZs times �. The sec-
ond term describes the change of Teff connected to the con-
figurational degrees of freedom if all other defects are taken
into account that characterize the nonequilibrium state. Con-
sequently, the effective temperature relaxes toward the bath

temperature, i.e., �T=T /TZ. The number density of all de-
fects �including the STZs� is �exp�−� /��, where �kBTZ is a
typical defect formation energy, and the relaxation rate per
defect �or per volume� is assumed to be proportional to �.

For studying aging behavior, Eqs. �23� and �25� together
with Eq. �24� have to be solved in the stress-step protocol,
and in addition Eq. �19� in the constant-strain-rate protocol.
In the absence of loading ��=0� during the waiting time tw,
aging as reflected in a change of Teff can only occur for
nonzero values of �. Accordingly, we need to assume �0
below Tg here. If � is considered to be independent of Teff
�and time�, integration of Eq. �25� yields

E1����T
−1 − ��tw�−1��

= E1����T
−1 − �0

−1�� + �2 exp�− �/�T��tw, �26�

where E1�x�=�x
�du exp�−u� /u is the exponential integral and

�0 the initial value after the quench. As long as Teff is not
close to T (i.e., ���T

−1−��tw�−1�=��T
−1�1−T /Teff�tw���1),

we can use the asymptotic relation E1�x�
exp�−x� /x for
large x=���T

−1−��tw�−1� in Eq. �26�. If we further replace x
by ��T

−1 in the denominator of exp�−x� /x, we obtain

1

��tw�



1

�
ln�e�/�0 + �2��T

−1�tw� �27�

for �2�tw
 ��T /���exp�� /�T�−exp�� /�0��. Figure 6 shows
the validity of this approximation �31�. It implies a power-
law decrease of the STZ density, ���tw�
=exp�−1 /��tw��
��2��T

−1�tw�−1/� in the aging regime
��T /��exp�� /�0�
�2�tw
 ��T /���exp�� /�T�−exp�� /�0��.
This is an interesting feature, since values �1 naturally
generate sublinear aging behavior in the state variable �. On
the other hand, the onset of the aging regime at waiting times
��−1 exp�� /�0� can be orders of magnitude larger than mi-
croscopic times, in disagreement with what is commonly ob-
served in simulations and experiments.

To explore temperature effects, we proceed as in Sec. III
and vary the relaxation time scale �=a�T�t0 together with
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FIG. 6. �Color online� Numerical solution of Eq. �25� for �=0
and the parameters �2=1, �=1, and �T=0.025 and three values of
�=1, 1.5, and 2 �top to bottom�. Also shown is the asymptotic
result Eq. �27� in the aging regime �dashed lines�.
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�T=T /TZ. In order to explore the effect of subaging in the
STZ density, we furthermore consider the possibility of a
temperature-dependent parameter ��T�1 at lower tempera-
tures, but the physical interpretation of such a variation is not
yet obvious. The relaxation rate � should also vary with T.
However, when rescaling time by � �or 1 /��, only the prod-
uct �� enters the equations of motion, so that a change of �
can be attributed to a simple rescaling of all time scales. We
therefore keep � constant here.

We solve Eqs. �23�, �25�, and �19� numerically with the
initial condition 	pl�0, tw�=0 �and ��0, tw�=0 in the constant-
strain-rate protocol�. The value for ��0, tw� follows from Eq.
�26�. For the constants we choose �1=�2=1, and ��=0.5
independent of shear rate. The physically relevant regime
should appear if we let ��0,0�=0.1��� for the initial con-
dition and set �T
1 �9� �Ref. �16� suggests to set ��=�T
when �T�� in the low shear rate limit; however, all situa-
tions studied here obey �T����.

A. Creep compliance

As before, we begin by solving for the plastic strain rate
at fixed applied stress �ext and obtain creep compliance
curves for different waiting times shown in Fig. 7. Aging is
now described not by reduced STZ transition rates, but in-
stead by a reduced effective temperature ��0, tw�. We observe
that this approach can also generate a scaling behavior with
waiting time, but the scaling form for the compliance is dif-
ferent: for small � we have basically 	̇pl=const / t from Eq.
�23�, yielding 	pl�t�
 ln�t�. This form also does not agree
well with the Kohlrausch form Eq. �3�.

B. Peak stress

The constant-strain-rate protocol provides a richer and
more stringent test on the predictions of the theory. Stress-
strain curves shown in Fig. 8 for different waiting times are

qualitatively similar to those of Fig. 2. Again we find a peak
stress that increases with waiting time tw and a plateau stress
independent of tw. Similarly, curves in Fig. 9 for varying rate
and constant tw show that both �max and �ss increase with
increasing strain rate. As in Fig. 3, we also find two regimes
of weak and strong rate sensitivity for small and large strain
rates, respectively. There is, however, a notable difference
between the two models: the difference between the peak
and plateau stress �overshoot� does not increase with increas-
ing rate as in Fig. 3, but appears to remain constant in the
limit of large rates. This is due to the fact that peak stress and
plateau stress exhibit the same logarithmic rate dependence.
A likely cause of this behavior here is that we have taken ��

to be a constant independent of shear rate. For quantitative
modeling of amorphous solids, a nontrivial rate dependence
of �� should be assumed �9,16�. Coupling �� to 	̇ext in a way
similar to Eq. �9�, so that �� increases with rate, will induce
a different rate dependence of the two stresses.

In analogy to Fig. 4, we summarize trends of the peak and
plateau stress with waiting time and strain rate for several
different temperatures in Fig. 10. Lower temperatures are
achieved by increasing � and increasing �. As can be seen,
the effective time formulation generates very comparable re-
sults. Figure 10�a� shows that the peak stress rises logarith-
mically with waiting time for all temperatures, and the offset
can again be adjusted by choosing �. Interestingly, we ob-
serve that subaging of the STZ density causes a decrease of
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FIG. 7. �Color online� Compliance curves �red, dot-dashed� for
several wait times tw=105–108 and �ext=0.05 in the effective time
formulation of the STZ theory. The other parameters are �=1 /�
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FIG. 8. �Color online� Stress-strain curves for several waiting
times tw=102–108 �bottom to top� at fixed strain rate 	̇ext=0.1. All
other parameters are as in Fig. 7.
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the logarithmic slope �max
�1� �1 /��T�, just as subaging of the

relaxation time was found to reduce �max
�1� �see Fig. 4�a��.

Inspecting the peak stress �max as a function of rate in Fig.
10�b�, we find a regime of logarithmic rate dependence with
slope �max

�2� if tw1 / 	̇ext and a crossover into a weaker de-
pendence for tw�1 / 	̇ext. The rate sensitivity in this regime
depends again on the value of �. The plateau stress �ss ex-
hibits the same two regimes of rate dependence.

Finally, we confirm the scaling behavior of the peak stress
with waiting time and rate in Fig. 11. Plotting the peak stress
against the product 	̇tw collapses all data onto a common
curve.

V. DISCUSSION

The two models with a slowing down of STZ transition
rates �model A� and a relaxation of the effective temperature-
controlled STZ density �model B� are both capable of cap-
turing most of the qualitative aging features observed in
computer simulations and experiments. The similarity of the
results obtained in both models can be understood from the
time evolution of the plastic strain in the STZ theory. Ac-
cording to Eq. �5�, it does not matter whether aging reduces
the STZ density or the transition rates between STZ states,
since the plastic strain rate is proportional to the number of
STZ transitions per unit time and volume. Whether fewer
STZs rearrange at a fixed rate, or whether the same number
of STZs rearrange at slower rates, the net effect for the strain
is the same.

In the present work, temperature effects enter into the
STZ transition rates only via a temperature-dependent pref-
actor �see Eq. �7��. An alternative would be to employ
Eyring-like expressions of the form R����
=exp�−TE /T�1�� /�0�� as suggested in Ref. �9�. In this
case, the logarithmic slope �max

�1� in Figs. 4 and 10 would no
longer depend on � or � alone, but would also depend lin-
early on T. However, it has been pointed out that the Eyring
expression predicts several other trends for the yield stress
that are inconsistent with observations �32,33�, among them
a vanishing rate dependence at low temperatures and a
temperature-independent yield stress in the small strain rate
limit. For this reason and for ease of comparison, we have
chosen to use Eq. �7� for both models.

In the stress-step protocol, both models A and B success-
fully account for the typical scaling behavior seen in the
compliance, but they do not reproduce the typical stretched
exponential form of the scaling function. This should not be
surprising in view of the mean-field rate equations used so
far, where the time evolution of the many different STZs is
represented by an averaged behavior. Disorder fluctuations in
transition and defect forming energies are expected to yield
broad distributions of the characteristic times entering the
models and these are expected to modify the form of the
scaling function.

In the constant-strain-rate protocol, the two models repro-
duce an increase of the peak stress with waiting time and a
relaxation toward a tw-independent plateau stress for contin-

FIG. 10. �Color online� �a� Peak stress against wait time at
	̇ext=0.1 for three different “temperatures” represented by the pa-
rameter sets ��=1, �=1, �T=0.01�, ��=1.5, �=1000, �T=0.005�,
��=2, �=20 000, �T=0.001� �from bottom to top�. Solid lines show
logarithmic fits to the data and have slopes �max

�1� �1 /�. �b� Peak
stress against rate for the same three temperatures at tw=106. The
solid lines have slope �max

�2� =0.91. �c� Steady-state plateau stress
against strain rate for the same three temperatures.
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FIG. 11. �Color online� Scaling plot of the peak stress as pre-
dicted by Eq. �4� for the three different “temperatures” analyzed in
Figs. 10�a� and 10�b� and several waiting times.
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ued straining into the stationary state. In both models, the
associated loss of memory is caused by the energy dissipa-
tion under loading, which drives the primary transition rate
between STZ states or the effective temperature toward
tw-independent values. An increase of the overshoot stress
with the strain rate is not seen in model B when a rate-
independent value of �� is used. However, this feature would
be missing in model A also if we had not assumed a strain-
rate-dependent limiting value �� of the primary relaxation
time in Eq. �9�.

It is worth noting that the dissipation mechanism is also
active during the initial loading period. It thus should also
affect the time needed to reach the peak stress in the
constant-strain-rate protocol or the characteristic time for
plastic strain to build up in the constant stress-step protocol.
However, for typical parameter values used in the present
study, the influence of dissipation during the initial loading
seems to be too weak for generating a visible rejuvenation
effect. It is nevertheless an attractive idea to associate reju-
venation �or reduced aging� with a facilitated stress �or
strain� response by dissipated energy. Further studies are nec-
essary to clarify this possibility in more detail.

More generally, the question arises as to which of the two
models more closely describes the microscopic dynamics on
a coarse-grained level. A problem in the effective tempera-
ture formulation is the onset of the aging regime, which can
be much larger than microscopic times. Another conceptual
difficulty is that the effective temperature is not directly ac-
cessible, while the characteristic time scale � can be deter-
mined in simulations �and in experiments if � is assumed to

correspond to the scale of the main structural �-relaxations�.
The effective temperature was shown to describe a nonequi-
librium steady-state system �13�, but there is no comparable
evidence yet that it also describes the transient behavior in
model B in the same way. On the other hand, the effective
temperature formulation captures many details of the behav-
ior of bulk metallic glasses very successfully and consis-
tently �9�. It is impressive in its simplicity, since only two
rate equations for 	pl�t� and ��t� are needed to describe the
dynamics. Moreover, in view of many experimental studies
on memory effects in plastic deformation of solids, where
defect concentrations have been shown to play a crucial role,
it is likely that a change of the STZ density is a key factor in
understanding aging memory.

It seems that the different physical mechanisms underly-
ing models A and B are both important to obtain a satisfac-
tory description of the aging dynamics. In future work, we
will perform a quantitative comparison between the predic-
tions of the two models and the simulation data described in
Sec. II in order to provide tighter constraints on their appli-
cability. More important is, however, to clarify what really
happens on the molecular scale. Simulations are needed to
answer this question.
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